Graduate Research Training Program Pharmacometrics

& Computational Disease Modelling

at the Martin-Luther-Universitaet Halle-Wittenberg and the Freie Universitaet Berlin, Germany

Launch of the Graduate Research Training (GRT) Program 'Pharmacometrics & Computational Disease Modelling' in Germany

C. Kloft⁽¹⁾, W. Huisinga⁽²⁾, H.G. Schäfer⁽³⁾, P. Nörtersheuser⁽³⁾

Martin-Luther-Universitaet Halle-Wittenberg, Dept Clinical Pharmacy, Halle, Germany;
Hamilton Institute/NUIM, Ireland & MATHEON/Freie Universitaet Berlin, Germany;
Elected representatives from Industry Partners in the Extended Steering Board

Background of Initiative

- Pharmacometrics & computational diseae modelling (PM & CDM) are highly interdisciplinary disciplines involving the understanding of the underlying biological/pharmacological/pharmaceutical mechanisms and the formal mathematical/statistical methods and gaining increasing attraction and are becoming internationally established.
- In Germany, qualifying in PM & CDM is *difficult to master for a PhD student*, due to its interdisciplinary character and the lack of a curriculum for graduate students at universities.
- At the same time, there is a high demand for thoroughly trained young scientists with sophisticated knowledge and expertise in these fields^{1,2} that can boost the disciplines in academia as well as in research-driven pharmaceutical companies.

Academic and Industry Partners

Academic Partners:

 Charlotte Kloft (MLU Halle-Wittenberg), Wilhelm Huisinga (Hamilton Institute/NUIM, MATHEON/FU Berlin)

Industry Partners

Aims

A novel initiative in Germany has been launched as a University program to

- Thoroughly train junior scientists in PM & CDM
- Advance theory and applications in PM & CDM
- Implement PM & CDM in the academic environment
- Promote PM & CDM within and outside academia and bridge the gap between academia and industry

Key Characteristics of Realisation

- **Thematic orientation in a promising, rapidly expanding area**
- Trans-disciplinary approach (Pharmacy & Mathematics)
- Close partnership with Pharma Industry (``Public-Private-Partnership'')

Research training curriculum

- Academic (A) modules of 30 h en bloc (1 week), subdivided into i) theoretical concepts & methods (2/3) and ii) practical hands-on exercises (1/3)
- Industry (I) modules of variable duration

A-Module characteristics

I-Module characteristics

Abbott, Bayer Schering Pharma, Bayer Technology Services, Boehringer Ingelheim, Merck, Sanofi-Aventis

, Board (2+2)

Steering Board: responsible for conceptual, structural & financial aspects. Extended Steering Board: responsible for main strategic intent within the scope and aims of GRT Program & admission process

Setting a frame for the Program

Important questions had to be agreed on between all partners:

- How to deal with Results / IP and publications
- Role and involvement of Industry Partners
- Research topics: generic vs. specific
- Location of PhD Students

Host Universities

The GRT Program is hosted at the Host Universities, and as such embedded into the respective departments.

- Department of Clinical Pharmacy, Institute of Pharmacy, MLU
- Department of Mathematics & Computer Science and Bioinformatics, FUB

Research and Training

The interdisciplinary PhD program is designed as a 3-year program including

- Introduction to the field: framework, theoretical concepts and methodology
- Conveying method and software expertise in PM & CDM
- Illustrative examples of relevance to drug discovery & development and use
- Insight into the mission and tasks of pharmaceutical companies
- Learn about the value chain of drug discovery and development
- Learn about fields of application of modelling approaches

Semester	Research training modules			Research
1 st	A-module 1: PK/PD modelling (March 2008)	A-module 2: PBPK modelling (April 2008)	I-module 1: Drug discovery/ development (1 week)	
2 nd	A-module 3: Population analysis	A-module 4: Systems Biology	I-module 2: Internship (1+ week)	Conti- nuous work in research project for PhD thesis
3 rd	A-module 5: Stats & data analysis			
4 th		A-module 7: Pharmacology ^(a)		
5 th	A-module 6: Biometrics & Trial design/simulation			
6 th				

(a) during 1st-4th semester at host university

A1 module: Introduction to PK/PD modelling

(Non)clinical PK, (Non)clinical PD, PK/PD models, Laplace transformation, Nonlinear regression, Curve-fitting algorithms, Numerical integration of ODE, Model diagnostics, In silico si-

- a research project on generic topics of high interest in PM & CDM
- a structured research training curriculum of advanced academic & industrial modules
- mentoring by an Industry Partner

Attractiveness to PhD students

The new program offers its GRT students a unique opportunity to experience research in the area of drug development and optimising drug therapy jointly within academia and industry along with a competitive research fellowship.

Application process

- Exclusively online via *www.pharmacometrics.de* \rightarrow application
- Selection based on application, letters of recommendation, number of scholarships (max. 12 per year), and personal interviews

mulations (Bootstrap, Monte Carlo simulation) Hands-on exercises

A2 module: Introduction to PBPK modelling

From empirical to physiological models, Whole body PBPK models, Ionization and protein binding, A priori prediction of tissue distribution, Models of GI absorption, Hepatic metabolism and renal excretion, Drug-drug interactions, Variability Hands-on exercises

Perspectives

- The GRT program will continuously be monitored to ensure a successful realisation: Evaluation by all partners mid/end 2009
- Integration and expansion of international Faculty Network
- Exchange with other initiatives/colleagues and their experience is sought and highly welcome

Contact: Cornelia Boehnstedt (coordinator), contact@pharmacometrics.de References: ¹Holford, Karlsson, Clin Pharmacol Ther, 82:103, 2007 ²Powell, Gobburu, Clin Pharmacol Ther, 82:97, 2007

Pharmacometrics & Computational Disease Modelling; http://www.pharmacometrics.de